تأثیر درس هندسه کاربردی بر توانایی فضایی دانشجویان معماری بررسی میزان تأثیر روشهای آموزشِ مرسومِ هندسه ترسیمی در معماری
Effects of Learning Descriptive Geometry on Spatial Capacity in Architecture Colleges
با توجه به تأثیرگذاری افزایش توانایی فضایی دانشجویان بر درک فضاها و احجام، هدف این پژوهش بررسی میزان اثربخشی یکی از دروس پایه کارشناسی بر افزایش توانایی فضایی است. لذا پرسش اساسی این است که آیا تدریس هندسه کاربردی، با شیوۀ مرسوم میتواند به هدف اصلی تبیین شده در برنامه مصوب شورای عالی برنامهریزی که همانا افزایش توانایی فضایی دانشجویان است، پاسخ گوید؟ برای پاسخ دادن به این پرسش، با مرور سابقه مطالعات مربوط به توانایی فضایی و تأثیر هندسه ترسیمی (بهعنوان بخش اصلی درس هندسه کاربردی) بر آن، مفاهیم و نظریههای مرتبط گردآوری شد. برای تدقیق نتایج تحقیق، بر طبق دو زیرمجموعه توانایی فضایی دو آزمون انتخاب شد و این آزمونها با استفاده از روش تحقیق شبهتجربی پیشآزمون و پسآزمون با گروه گواه در دو دانشگاه با دو برنامه مختلف آموزشی برگزار و نتایج تحلیل گردید. نتایج آزمونها نشان داد که نه تنها گذراندن درس هندسه کاربردی باعث افزایش توانایی فضایی دانشجویان نشده است، بلکه موجب کاهشی معنادار در هر دو گروه آزمون شده است. این در صورتی است که دادههای گروه گواه افزایشی غیرمعنادار را نشان میدهد. یکی از علل احتمالی این نتایج را میتوان تغییر استراتژی دانشجویان در حل مسائل فضایی دانست.
Nowadays, a large number of problems can be seen in Iranian architecture; however, the studies in this area are not deep enough and just investigate the current constructions and spaces, while there is a lack of fundamental research regarding teaching and learning techniques in architecture schools. It should be considered that teaching is the most crucial issue and the underlying factor for all problems and developments. Thus, this paper and the similar ones are hoped to indicate the ending of common architecture research methods and to draw the attention of teachers and scholars to teaching. The capacity of understanding space and volume is one of the most important capabilities in architecture, which has to be developed in architecture teaching. Over the past few decades, a large number of studies have been carried out about different aspects of spatial capacity, developing it is research. Considering the beneficial impacts of students’ spatial capacity enhancement on understanding spaces and volumes, this paper aims to evaluate the effectiveness of one of the core coursed in bachelor’s level on improving spatial capacity. Therefore, the key question is whether practical geometry teaching based on the conventional method can meet the requirements of the High Council of Cultural Revolution’s directive, which is rising students’ spatial capacity, or not. In an attempt to answer such a question, the appropriate concepts and theories were collected via reviewing the former studies on spatial capacity and the impact of descriptive geometry (as the inextricable part of practical geometry). In order to achieve the most accurate results, according to two subcategories of spatial capacity, two tests were chosen and were conducted using a quasi-experimental and pretest-posttest design with control group at two universities in two different educational programs. The test outcomes showed that practical geometry course not only could not increase the students’ spatial capacity, but also significantly decreased it in both groups. This happened while the data from the control group indicated a baseless increase in the students’ spatial capacity. One of the plausible reasons for such results can be a change of strategy taken by the students for solving the spatial problems. This paper is, in turn, a warning for beginning of reviewing the contemporary traditions of architecture teaching. Many experiences of teachers and instructors show the necessity of leaving the architecture concepts on paper and beginning to touch the space by the students. However, lack of scientific and critical investigation using international methods have to be covered by researchers. This study is a quantitative one in which the amount of unanswered questions of spatial capacity tests has significantly increased. Arguments for finding qualitative reasons of this significant decrease in spatial capacity test performance were considered in ideas and strategies adopted by the students in solving spatial problems.
(890.2 کیلوبایت) دانلود مقالهمشخصات مقاله
- پورمحسنی کلوری، فرشته؛ وفایی، مریم و آزادفلاح، پرویز (1383). «اثر بازیهای رایانهای بر توانایی چرخش ذهنی نوجوانان»، تازههای علوم شناختی، 6(3-4): 75 -84.
- دهقانیزاده، جلال؛ محمدزاد، حسن و حسینی، فاطمه سادات (1393). «مقایسۀ چرخش ذهنی دانشجویان فعال و غیرفعال»، رفتار حرکتی (پژوهشگاه تربیت بدنی و علوم ورزشی)، 16: 93-106.
- سرمد، زهره؛ بازرگان، عباس و حجازی، الهه (1395). روشهای تحقیق در علوم رفتاری. انتشارات آگه، تهران.
- سیف، علیاکبر (1382). روشهای اندازهگیری و ارزشیابی آموزشی، انتشارات دوران، تهران.
- شورای عالی برنامهریزی وزارت فرهنگ و آموزش عالی (سابق) (1377). مشخصات کلی، برنامه و سرفصل دروس دوره کارشناسی معماری، مصوب سیصد و شصت و پنجمین جلسه شورای عالی برنامهریزی.
- علیپور، احمد و باغبان پرشکوهی، علیرضا (1387). «دست برتری و توانایی چرخش ذهنی در کودکان»، علوم روانشناختی، 10(3): ۶۳-۷۴.
- وطنپرست، شعله؛ علیپور، احمد؛ زارع، حسین و یادگاری، امیدعلی (1390). «مقایسه توانایی فضایی (چرخش ذهنی، تجسم دیداری و کشیدن سطح خط آب) در زنان باردار سه ماهه سوم با زنان بعد از زایمان طبیعی»، مجله دانشکده پرستاری و مامایی دانشگاه علوم پزشکی ارومیه، 9(4): ۳۰۶-۳۱۴.
- Barke, H. D. (1993). “Chemical education and spatial ability”, Journal of Chemical Engineering, 70 (12): 968-971.
- Boakes, N.J. & Pomona, N.J. (2009), “Origami Instruction in the Middle School Mathematics Classroom”, RMLE Online, 32(7): 12-1.
- Carroll, J. B. (1993), Human Cognitive Abilities: A Survey of Factor-Analytic Studies, Cambridge University Press: Cambridge, England.
- Gittler, G., &Glueck, J. (1998). “Differential transfer of learning: Effects of instruction in descriptive geometry on spatial test performance”, Journal for Geometry and Graphics, 2(1): 71-84.
- Guay, R. (1977), Purdue Spatial Visualization Tests, Purdue Research Foundation: West Lafayette, IN.
- Guilford, J. P., & Lacy, J. I. (1956) Printed Classification Tests, AAF, Aviation Psychological Progress Research Report, 5, U.S. Government Printing Office: Washington, DC.
- Ho, C. H. (2006). Spatial Cognition in Design. School of Architecture. Atlanta, Georgia Institute of Technology.
- Jesús M. S., Robles, C, L., Montes Tubío, F. P. (2014), Spatial skills of students(in new technical degrees. University of Granada, Spain.
- Kahle, J. B. (1983). “The disadvantaged majority: Science education for women”, AETS Outstanding Paper for 1983, Burlington, NC, Carolina Biological Supply Company.
- Karpf, A. R., Bai, S., James, S. R., Mohler, J. L., and E. M. Wilson. (2009). Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP.
- Kaufmann, H., Steinbügl, K., Dünser, A., & Glück, J. (2005). “Improving Spatial Abilities by Geometry Education in Augmented Reality”, Annual Review of CyberTherapy and Telemedicine: A Decade of VR, 3(4): 65-76.
- Kospentaris, G., & Spyrou, P. (2010). “The Effects of High School Geometry Instruction on the Performance in Spatial Tasks”, Journal for Geometry and Graphics 14(2): 227–244.
- Leopold, C. (2005). “Geometry Education for Developing Spatial Visualisation Abilities of Engineering Students”, The Journal of Polish Society for Geometry and Engineering Graphics, 15: 39 – 45.
- Linn, M.C., & Petersen, A.C. (1985). “Emergence and characterization of sex differences in spatial ability: A meta-analysis”, Child Development, 56: 1479-1498.
- Lohman, D. (1988). “Spatial abilities as traits, processes, and knowledge”, In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (vol. 4, 181-248), Hillsdale, NJ: Erlbaum.
- Lohman, D. F. (1979). Spatial Ability: A Review and Reanalysis of the Report No. 8, Aptitude Research Project, School of Education, Stanford University: Palo Alto, CA.
- Maier, P. H. (1994). Räumliches Vorstellungsvermögen, Frankfurt a.M., Berlin, Bern, New York, Paris, Wien: Lang.
- Martin-Gutierrez J., Albert Gil F., Contero M., & Saorin J.L. (2013). “Dynamic three-dimensional illustrator for teaching decriptive geometry and training visualisation skills”, Computer Applications in Engineering Education, 21(8): 8-25.
- McKim, R. H. (1980). Experiences in visual thinking. Boston, MA: PWS Publishers.
- McGee, M. G. (1979). “Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences”, Psychological Bulletin, 86(5): 889-918.
- Mohler, J. L. (2006). “Examining the spatial ability phenomenon from the student’s perspective”, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Augus, Purdue University.
- Myers, C. T. (1958). Some Observations of Problem Solving in Spatial Relations Tests (ETS RB 58-16), Educational Testing Service: Princeton, NJ.
- Nagy-Kondor, R. (2010). “Spatial Ability, Descriptive Geometry and Dynamic Geometry Systems”, Annales Mathematicae et Informaticae, 37: 199–210.
- Newcombe, N. S., Mathason, L., & Terlecki, M. (2002). “Maximization of spatial competence: More important than finding the cause of sex differences”, In A. McGillicuddy-De Lisi & R. De Lisi (Eds.), Advances in applied developmental psychology, Vol. 21. Biology, society, and behavior: The development of sex differences in cognition (183-206). Westport, CT: Ablex Publishing.
- Norman, K. L. (1994). “Spatial visualization- A gateway to computer-based technology”, Journal of Special Educational Technology, 3: 195-206.
- Pellegrino, J. W., Hunt, E. B. (1991). “Cognitive Models for Understanding and Assessing Spatial Abilities”, In Intelligence: Reconceptualization and Measurement; Rowe, H. A. H., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ.
- Salthouse, T. A., Babcock, R. L., Skovroned, E., Mitchell, D. R. D., & Palmon, R. (1990). “Age and Experience Effects in Spatial Visualization”, Developmental Psychology, 26(1): 128.
- Smith, I. M. (1964). Spatial ability-Its educational and social significance. London: University of London.
- Sorby, S. A. (1999). “Developing 3D spatial visualization skills”, Engineering Design Graphics Journal, 63(2): 21–32.
- Sorby, S. A.(2009). “Educational Research in Developing 3-D Spatial Skills for Engineering Students”, International Journal of Science Education, 31(3): 459-480.
- Takeyama, K., Maeguchi, R., Chibana, K., & Yoshida, K. (1999), Journal for Geometry and Graphics 3 (1): 99.
- Tartre, L. A. (1990). “Spatial skills, gender, and mathematics”, In E. Fennema & G. C. Leder (Eds.), Mathematics and gender (27-59). New York: Teachers College Press.
- Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied cognitive psychology, 22(7), 996-1013.
- Thurstone, L. L. (1950). “Some Primary Abilities in Visual Thinking”, Proc. Am. Phil. Soc. 94 (6): 517–521.
- Vandenberg, S. G., & Kuse, A. R. (1978). Percept. Mot. Skills, 47 (2): 599–604.
- Yagmur, E. K. (2010). 3D Mental Visualization in Architectural Design, Georgia Institute of Technology.
- Yukhina, E. (2007). Cognitive Abilities & Learning Styles in Design Processes and Judgments of Architecture Students. Key Centre of Design Computing and Cognition, School of Architecture, Design Science and Planning, Faculty of Architecture. Sydney, The University of Sydney.
مسابقات
جوایز
نشریات