بهره گیری از تکنولوژی تشخیص چهره در خلق معماری هوشمند احساسگرا: رهیافتی در بازشناسی احساسات کاربران در ادراک بصری نمای ساختمان هوشمند
Face Recognition Technology and Emotional Intelligent Architecture: A New Approach toward Visual Perception of Intelligent Building Façades
احساسات بخش عمدهای از وجود انسان و تعاملات اجتماعی او را تشکیل میدهد، بنابراین یافتن وجوه گوناگون و بازشناسی آن از اهمیت ویژهای برخوردار است. یکی از اهداف معماری هوشمند احساسگرا طراحی فضاهایی است که در آنها قابلیت تأثیرگذاری بر حالات روانشناختی و احساسی افراد وجود داشته باشد. بر این اساس پژوهش حاضر به دنبال برقراری ارتباط میان انسان و فضای معماری و بررسی نقش تکنولوژیهای پیشرفته جهت برقراری تعادلی منطقی میان این دو حوزه است. بدین منظور جهت بررسی کاربردی موضوع، حالات احساسی 44 نمونه (22 مرد و 22 زن) با میانگین سنی 18-28 سال در هنگام رویارویی با هندسه و تناسبات گوناگون یک نمای هوشمند ثبت شد و 5 حالت احساسی آنان طبق نمودار برانگیختگی-جاذبه و با استفاده از سه روش پرسشنامه، ضبط تصاویر ویدئویی و پردازش تصویر حالات چهره مورد ارزیابی قرار گرفت. نتایج حاکی از آن است که میتوان دستههای احساسی مشخصی را برای افراد در هنگام مشاهده نماهای گوناگون تعریف نمود. همچنین در بررسی انجام گرفته جهت بازشناسی احساسات مشخص شد که در 65% موارد میان بازشناسی احساسی صورت گرفته به روش پرسشنامه و آنالیز تصاویر چهره به کمک نرمافزار همخوانی وجود دارد. در انتها الگویی جهت تغییر نما به شکل هوشمند و متناسب با اشخاصی که از نما بازدید میکنند ارائه گردید.
Emotions constitute a major part of human existence, social interactions influence on decision-making, experiences and most of all the social interactions and communications with other persons, so revealing its various aspects and its recognition are very important. The aim of Emotional Intelligent Architecture (EIA) is designing the spaces in which they can influence psychological states and emotions by using physical factors such as geometry, light, temperature, sound and smart materials. Emotional intelligent building can show people's sense of presence in various forms, and provide other issues such as entertainment, care, health and safety for users of the space. There are several key challenges in emotional intelligent building design. One of these challenges is to find the person's emotional state at the moment, and to establish a mutual communication between people and space is yet another challenge. Moreover, physical strength, electrical components, light intensity control as well as user safety during use of space are some of the important factors that affect the emotional intelligent building design. Producing visual qualities (pleasure and aesthetics) and development of a scale control software that can be re-usable in infrastructure are other important issues. As the final point, increasing the capacity of visitor’s interactions should be considered as a key point in intelligent building design. So, this study seeks to devise a relationship between human and architectural space in order to create a sensible balance between these two items. For this purpose the role of advanced technologies has been investigated. According to the studies, in order to achieve a building intelligent façade based on emotions of visitors, the best solution would be use of facial recognition technology. Researchers generally use two methods for classification of feelings. In this study we use arousal-attraction two-dimensional space. The vertical axis in arousal-attraction chart shows the active and inactive feeling, and the horizontal axis shows a positive or negative sense. In this study, facial expressions of 44 subjects (22 males and 22 females) has been evaluated. The mean age of participants was 18-28 years. Facial expressions of the subjects have been captured while viewing various geometry of an intelligent façade. Then five emotional states have been evaluated according to arousal-attraction chart including: pleasant, unpleasant, comfort, surprise and neutral, using three methods, i.e. questionnaires, recording video and image processing. The results indicate that people have the same emotions while viewing the intelligent façade with various geometry of the openings. After feature extraction, classification and interpretation, emotional states associated with each image were identified for different groups. Afterward certain emotional categories were defined for each group. The result also shows that recognition of users' emotions by two methods of questionnaire and image processing are approximately the same and in 65 present of cases are completely matched. Finally, the model for smart change of the façade that is appropriate for the people who visit the space was provided. It can be concluded that Emotional Intelligent Architecture (EIA) can create a suitable relationship between design and human and can help the designers to create the facades are appropriate for human psychological states.
(1.7 مگابایت) دانلود مقالهمشخصات مقاله
- ایلبیگی، الناز؛ یزدچی، محمدرضا و مهنام، امین (1393) «طراحی سیستم پیشرفتهای برای بازشناسی احساسات بر اساس سیگنالهای مغزی و تصاویر چهره»، مجله علمی سازمان نظام پزشکی جمهوری اسلامی ایران، 32، 1، صص. 27-40.
- باقری، ابراهیم (1391) «مفاهیم کاربردی در طراحی احساسگرا»، نشریه هنرهای زیبا، 4، 50، صص. 51-60.
- باقری، مهسا و شاهرودی، عباسعلی (1393) «ارزیابی و مداخله ترجیحات احساسی کاربران در فضای جمعی»، مجله روانشناسی معاصر،9، صص. 63-76.
- شاهرودی، عباسعلی (1393) «بهکارگیری علوم مغز و اعصاب در ارتقا کیفیت فضای معماری»، دومین همایش ملی معماری و شهرسازی در گذر زمان در جستجوی فضاهای گمشده، قزوین، دانشگاه بینالمللی امام خمینی.
- وکیلی راد، میثم (1391) «نمای دینامیک؛ نمای هوشمند»، ماهنامه ساخت و ساز، 31،6، صص. 62-65.
- Cernea, D., & Kerren, A. (2015). A survey of technologies on the rise for emotion-enhanced interaction. Journal of Visual Languages & Computing, 31, 70-86.
- Chalup, S. K., Hong, K., & Ostwald, M. J. (2010). Simulating pareidolia of faces for architectural image analysis. Brain, 26(91), 100.
- Desmet, P., Overbeeke, K., & Tax, S. (2001). Designing products with added emotional value: Development and appllcation of an approach for research through design. The design journal, 4(1), 32-47.
- Ekman, P., & Friesen, W. V. (1978). Manual for the facial action coding system. Consulting Psychologists Press.
- Hung, T., & Nieh, C. (2009). A study on relationship between modern architectural shape and kansei image evaluation-taking diversity for distinctive customers as example. In International Conference on East Asian Architectural Culture (Vol. 2, pp. 137-148).
- Ishihara, S., Ishihara, K., Nakagawa, R., Nagamachi, M., Sako, H., Fujiwara, Y., & Naito, M. (2010). Development and improvement of a washer-dryer with kansei ergonomics. In Proceedings of the International MultiConference of Engineers and Computer Scientists. Conference.
- Ko, K. E., Yang, H. C., & Sim, K. B. (2009). Emotion recognition using EEG signals with relative power values and Bayesian network. International Journal of Control, Automation and Systems, 7(5), 865-870.
- Leon, E., Clarke, G., Sepulveda, F., & Callaghan, V. (2004, December). Neural network-based improvement in class separation of physiological signals for emotion classification. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on (Vol. 2, pp. 724-728). IEEE.
- Liu, Y., Sourina, O., & Nguyen, M. K. (2010, October). Real-time EEG-based human emotion recognition and visualization. InCyberworlds (CW), 2010 International Conference on (pp. 262-269). IEEE.
- Tao, H., & Huang, T. S. (2002). A PIECEWISEBÉZIER VOLUME DEFORMATION MODEL AND ITS. Advances in Image Processing and Understanding: A Festschrift for Thomas S Huang, 52, 39.
- Vecchiato, G., Jelic, A., Tieri, G., Maglione, A. G., De Matteis, F., & Babiloni, F. (2015). Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cognitive processing, 16(1), 425-429
- Wiberg, M. (2010). Interactive Textures for Architecture and Landscaping: Digital Elements and Technologies. IGI Global, 260 pages.
مسابقات
جوایز
نشریات
http://aup.journal.art.ac.ir